If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+10x=16
We move all terms to the left:
0.5x^2+10x-(16)=0
a = 0.5; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·0.5·(-16)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{33}}{2*0.5}=\frac{-10-2\sqrt{33}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{33}}{2*0.5}=\frac{-10+2\sqrt{33}}{1} $
| 4w+6w+w=3w+7w | | 15÷x=8(1/3) | | x-3/4=15/4 | | 20-84=x | | 1/4m-5=7 | | 4(x+8)-6x=38 | | x÷15=8(1/3) | | 7x-4=8+5x | | 27=r-12;40,41,42 | | 31=r36 | | x+2.5=22.4 | | 75k=k+5+6 | | x-11.2=8.9 | | 8(w+2)=-9w+33 | | x2=812 | | 36.6=b/6 | | -15-x=21 | | 2(x)=86 | | x−8=61−12(x+9) | | ∑(4k−2)16k=1 | | 324=(w+3)*w | | 25=a5 | | 3/4x-18=65 | | H=-16t^2+t+50 | | 77/33=n/3 | | 1|2z+6=3/2((z+6) | | .06+.03(300-x)=12 | | k/1.25=3 | | 18=42x | | m=5/6=1.2 | | .5x^2+9x-72=0 | | 225+15x=350+10x |